交流電流傳感器常用于開關模式電源應用。傳統(tǒng)的交流電流傳感器設計折中重點圍繞著選擇“zui簡捷的設計方法”。但是,本文所描述的交流電流傳感器以巧妙的方法應用了基本技術,zui終形成的傳感器性能超出了設計者的預期。 常見的控制方案,像電流模式控制和峰值電流限制,在沒有傳統(tǒng)交流電流傳感器提供實時信息的條件下是不可能實現(xiàn)的。設計師通常使用變壓器、運算放大器和無源分立元件來實現(xiàn)這些傳感器,盡管市場上有許多單芯片解決方案。他們堅持使用分立電路設計方案有許多原因,包括成本和/或性能,同時也在期待有更好的單芯片交流電流傳感器方案出現(xiàn)。不過迄今為止,他們看到的還只是在已有老技術上的少量改進。 對于一個成本壓力很大的電源系統(tǒng)來說,設計師的需求一覽表中首先是成本,所以交流電流傳感器的安裝成本必須具有吸引力(安裝成本指的是傳感器自身成本再加上外圍元器件成本,以及額外的制造成本,比如校準等)。第二項是通過將電流檢測通道上的功率損耗降到zui小來提率的低阻值有效串行電阻(ESR),這在負載點(POL)調節(jié)器這類大電流設備中尤其重要,因為每增加一個毫歐的ESR都會引起高達1%的效率下降。在成本和效率之外,還要求體積小,這對于安裝到電路板上的電源模塊來說是一個關鍵要求。其他方面的考慮還包括高精度(可以簡化或省去系統(tǒng)內部校準)、足夠高的隔離電壓(在AC/DC轉換器中這是一個重要考慮因素),還有就是用于高頻系統(tǒng)應用的寬工作帶寬。 電源設計中IFM易福門電流傳感器選擇 傳感器種類 可用的電流檢測解決方案可以被分為兩大類:即單芯片方案和分立電路方案,如表1所示。
表1:相關交流電流傳感器比較一覽表。 面對這些含糊不清的技術分類,設計師必須嚴格地區(qū)分電流傳感器的好壞,然后選擇能夠達到目標的*方案。盡管有足夠多的交流電流檢測解決方案涌現(xiàn),但許多設計還不是*方案,需要進一步優(yōu)化,至少目前為止是這樣。 的新方案 圖1所示的單向電流傳感器是一個*的、低成本、率、體積小的交流電流傳感器,并且還具有許多其他優(yōu)點。
圖1中,傳感器由一個金屬嵌片和封裝在一個小型(4x4x1mm)QFN封裝中的硅裸片組成。嵌片和片上精選線圈一起構成一個耦合電感器,因此流經(jīng)嵌片的交流電流感應出的電壓等于電流的一階導數(shù)(即v=Lm di/dt)。然后片上的信號處理電路執(zhí)行一個有限積分運算,產(chǎn)生一個與流經(jīng)嵌片的電流成正比的實時信號。該信號再經(jīng)過片上的溫度補償器和增益級電路進一步調整。zui后的結果是一個滿刻度為2V、噪聲非常低的溫補電流信號。 這種令人迷惑的簡單架構卻能提供許多傳統(tǒng)電流檢測技術無法提供的優(yōu)點。例如,通過使用標準CMOS處理技術和半導體封裝實現(xiàn)了極低的成本,這兩種技術使得該架構的成本可能比CT的安裝成本還有競爭力,而且還有更高可靠性和更小體積等附加優(yōu)點。同時還實現(xiàn)了較低的損耗,這是因為嵌片在電流檢測通道中僅僅增加了1.3mΩ的串聯(lián)電阻和2nH的串聯(lián)電感。還有一個附加的優(yōu)點,就是通過對積分操作進行平均,將輸出噪聲減到了zui小,從而節(jié)省了外部RC濾波器的成本和空間。它甚至還能抑制變壓器耦合設計中的邊沿噪聲,從而無需邊沿消隱。圖2和圖3分別通過將未濾波的輸出比作(在低值傳感電阻上使用差分探頭)測得的電流和CT電路(CT、二極管和RC濾波器)來展示了低噪聲原理。在兩種情況下,交流電流傳感器都幾乎沒有噪聲。
圖3:Si85xx輸出與CT輸出的關系。 如何實現(xiàn)這一新技術 使用這種電流傳感器的方法非常簡單。連接傳感器使得電流從IIN流到IOUT端。反向電流(即從IOUT流到IIN的電流)將導致零輸出,因此不會損壞器件。 上面提及的有限積分要求在每個電流測量周期之前將積分器復位。實現(xiàn)的方法是將現(xiàn)有的門控信號連接到復位輸入端(R1–R4)。積分器復位的標準很簡單:在電流測量后復位必須立即開始,而在下一次測量前必須結束。對于額定的精度,復位事件zui少要持續(xù)250nS。 片上積分器復位邏輯具有足夠的靈活度,允許這種電流傳感器能夠與任意的電源系統(tǒng)拓撲一起使用。圖4所示的是用于單輸出Si850x的復位電路。這些器件通??梢杂糜诓淮嬖谧儔浩鞔磐ㄆ胶饪刂茊栴}的相對簡單一些的應用(如降壓和升壓電路)中。
如圖4所示,當TRST輸入被連接到VDD時,積分器復位可以受R1和R2上的信號的實時控制。為了滿足高頻或/和高占空比應用,可以將TRST通過定時電阻RTRST連接到地來縮短復位時間。在這種情況下,復位的啟動由R1和R2觸發(fā),持續(xù)時間則由RTRST決定。在較高速度的操作時,允許用戶對傳感器精度進行調整。 這意味著這些產(chǎn)品適用于更復雜的拓撲架構,例如控制或監(jiān)視變壓器磁通平衡非常重要的全橋應用。這種復雜的復位邏輯(圖5)是圖4所示電路的一個超集。 圖5:Si851x復位邏輯。 正如圖中所示的那樣,有三種復位算法可以選擇:即XOR、XNOR或AND/OR,選擇依據(jù)則取決于MODE狀態(tài)和R4輸入。需要重申的是,復位事件可以由復位輸入單獨決定,或由復位輸入進行觸發(fā),并由前面所述的RTRST來定時。總之,RESET1適用于升壓、隔離式和非隔離式降壓以及其他相對簡單的拓撲,RESET2一般用于推拉應用,而RESET3適合全橋應用。 應用實例 圖6所示的是前面提到的用于簡單同步降壓轉換器的電流傳感器,當Q1接通時對電流進行測量。同步FFT(Q2)出來的門控信號用于積分器復位,因為要確保復位事件不與電流測量周期相重疊。 圖6:同步降壓轉換器中的Si850x。 還需注意,復位輸入R2應接地,這樣當R1為高阻時,能夠使(XOR)門(圖4)的輸出觸發(fā)復位啟動。定時電阻RTRST用于設定圖6時序圖所示的復位事件周期(tR)。 AtlLQkVCi--http://www.cn-pe.cnD"YV%]a 復位信號來自驅動器輸入,因為增加的驅動器和晶體管時延能夠提供額外的時序余量。但是在帶有集成驅動器的控制器中是無法訪問驅動器輸入信號的,故必須用驅動器輸出信號來復位。在這種情況下,復位輸入端通常需要一個分壓器將驅動器輸出的擺幅限制到Si85xx VDD范圍內。 圖7所示是一個相移調制的全橋應用,使用了一個工作在乒乓模式的電流傳感器。乒乓模式能使一個單電流傳感器代替兩個CT(通常用來監(jiān)視變壓器磁通平衡)。乒乓輸出模式將橋的各臂上的電流信號送到分開的各個輸出端。 圖7:相移全橋應用中的Si851x(乒乓模式)。
擴展?jié)M刻度范圍 許多應用要求大于20A的滿刻度范圍,這可以利用一個簡單的電路板版圖技巧來實現(xiàn)(圖8)。 左圖為安裝在電路板上的電流傳感器的“x射線圖”。這是一種標準的安裝方法,在載流導體中有一間隙,該間隙通過電流傳感器中的金屬嵌片橋接起來,從而允許全部被測電流流過嵌片。右圖中增加了一個與嵌片平行的小電流旁路線,它們構成一個分流器,旁路線的寬度和厚度則決定了分流比。例如,一個1mm寬的旁路線能將從嵌片上分流足夠的電流,使Si85xx的滿刻度增加1.8倍,達到36A。
本文小結 交流電流傳感器常用于開關模式電源應用。傳統(tǒng)的交流電流傳感器設計折中重點圍繞著選擇“zui簡捷的設計方法”。但是,本文所描述的交流電流傳感器以巧妙的方法應用了基本技術,zui終形成的傳感器性能超出了設計者的預期。它具有很多重要的優(yōu)點:性價比高,損耗低,體積小,帶寬寬,精度高,還提高了系統(tǒng)集成度(特別是在全橋應用中),并且噪聲低,靈活度高,能夠應用于50kHz到1.2MHz的開關模式系統(tǒng)。它將是21世紀電源應用中*的交流電流傳感器解決方案……它還將是zui通用的電流傳感器! |
電話
微信掃一掃